Cerro Tololo Inter-American Observatory in Chile is operated by the National Optical Astronomy Observatory. This image is composed of 316 individual 15-second exposures taken with a Canon 60D and a Sigma 10mm fisheye lens at f/2.8 and ISO6400. The star trails trace the motion of the night sky over 79 minutes. The stars move around the south celestial pole in very small circles in the upper right of the image. The celestial equator can be seen in the lower left of the image. Photo by Robert Sparks. To see more of Robert’s work, go to http://www.flickr.com/photos/halfastro/

INSIDE THIS ISSUE

From the President .. 2
From the Executive Director 3
Editor’s Corner ... 4
Advertising in The Earth Scientist 5
Estimating How Often Mass Extinctions Due to Impacts Occur on the Earth .. 6
Climate Change, Sea Level Rise and Ocean Acidification .. 9
Inspiring Future Scientists through Synergy between K-12 Classroom Learning and Water Cycle Research .. 12
Exploring Seafloor Sediments Using Real Data: A Presentation at the 2013 AGU Geophysical Information For Teachers (GIFT) Program 16
Polar Science and Engineering: Model for NGSS Practices 20
The Next Generation Science Standards:
Opportunities for Earth Science Educators 25
NOAA: Making Your Life Better Since 1807 28
Manuscript Guidelines .. 35
Membership Information .. 35

$10.00*

*ISSN 1045-4772
This article is made available by NESTA to the author(s) of the article as an Open Access Article based on the payment of an Open Access fee to NESTA. With Open Access, the article will be made available to anyone on the NESTA website. The author may also post the formatted and published article, in this published PDF form only, on their own website(s), on other third-party website article repositories, and circulate their article via electronic means such as email. NESTA retains copyright of the article with Open Access, and permission from NESTA must be obtained for uses other than those outlined in the copyright agreement.

Through the Open Access option, NESTA offers authors of articles in *The Earth Scientist* the opportunity to make their articles openly available to everyone, irrespective of membership in NESTA. With Open Access, the article will be made openly available on the NESTA website. The author may also post the article, in the formatted and published PDF form provided by NESTA, on their own website(s), on other third-party website article repositories, and circulate their article via electronic means such as email. With Open Access, NESTA continues to retain copyright of the article, and permission from NESTA must be obtained for uses other than those outlined in the copyright agreement.

To find out more about the NESTA Open Access publication option, visit http://www.nestanet.org/cms/content/open-access-articles-earth-scientist
Introduction

Climate change is happening now! Based on many different data sets, scientists have reached a strong consensus that our global climate is changing beyond what can be reasonably expected from natural cycles (Figure 1). Carbon dioxide (CO₂) is rapidly increasing, largely due to anthropogenic activities such as burning fossil fuels. Average global temperatures are warming, glaciers and ice sheets are melting, and sea levels are rising. Our oceans are warming, providing fuel for more extreme weather events. Atmospheric CO₂ is dissolving into the ocean, producing carbonic acid and lowering pH levels. This “ocean acidification” poses serious threats to coral reefs and calcareous plankton, which form the base of the marine food web (e.g., Doney et al 2007). For all of these reasons, it is essential that climate change be incorporated into science curricula. Fortunately, climate change science can be used to address Next Generation Science Standards (Box 1). Presented in this article are two hands-on activities, which can be tailored to different grade levels and incorporated into various subject areas.

Earth Systems Science

ESS2 Earth’s Systems (Earth Materials and Systems; Weather and Climate)
ESS3 Earth & Human Activity (Natural Hazards; Human Impacts; Global Climate Change)

Physical Science

PS1 Matter and Its Interactions (Chemical Reactions)
PS4 Waves (Electromagnetic Radiation)

Cross-Cutting Concepts:

1. Patterns
4. Systems and System Models

Science and Engineering Practices:

1. Analyzing and interpreting data
8. Obtaining, evaluating & communicating information

Box 1. Next Generation Science Standards (NGSS) addressed through these activities

Figure 1. CO₂, Temperature and Sea Level versus time. Note (a) The amount of CO₂ in our atmosphere (≈400 ppm) is higher than it’s ever been in human history (data from NOAAa, NOABB); and (b) CO₂ concentration is closely, positively correlated with global temperature and sea level. Thus the recent CO₂ spike is of great concern (modified from Hansen et al, 2008).
Activity 1: Debunking Climate Myths (Grades 6 and older)

Climate deniers do an excellent, although highly misleading, job of suggesting that climate change is a conspiracy, “just a theory” or part of a natural cycle. In their attempt to discredit climate change science, they have popularized numerous myths. As expected, scientists are actively refuting these myths and letting the public know what the science really says. One website (www.skepticalscience.com) does a particularly excellent job of using these “climate denier” myths as a framework for presenting scientific research on climate change in clear, jargon-free language. Research is presented at two levels: basic and intermediate. The “basic” level conveys the essential results that can be readily understood by non-specialists. Importantly, the website also offers an “intermediate” level which allows more in-depth examination of the data and provides references to original sources in the peer-reviewed scientific literature.

In this activity, students access the Skeptical Science website, pick a myth, evaluate the science arguments, and share their results with their peers. Or the teacher can print out selected myths and do the activity in hard-copy. The authors believe that the arguments debunking several myths (e.g., “The CO₂ record is unreliable”) can be understood by middle school students whereas others (e.g., CO₂ lags temperature) are better suited to high school or college students.

Activity 2: How has the ocean chemistry changed in the past 25 years? (Grades 8 and older)

Most people think of global climate change as the CO₂ problem. But, when human activities put excess CO₂ in the atmosphere, this causes another, related problem: ocean acidification. Here’s how it works: Some of the atmospheric CO₂ gets dissolved in the ocean, where it combines with water (H₂O) to form carbonic acid (H₂CO₃). This causes the ocean to become more acidic (lower pH).

How do we know this? Since October 1988, scientists from the Hawaii Ocean Time-series (HOT) program have been making monthly measurements of seawater. These time-series data show that the ocean CO₂ has increased and pH has decreased over the past 25 years. In this activity, students first graph HOT data either by hand or electronically (e.g., with Microsoft Excel) to reproduce Figure 2. They can optionally also graph the atmospheric CO₂ record.

Box 2. Questions for Activity 2

1. Why do you think the atmospheric CO₂ levels fluctuate in such a regular (saw-toothed) pattern?
2. The atmospheric and oceanic CO₂ levels both generally increase with time. Why?
3. The oceanic CO₂ and pH data appear to be mirror images of each other. Why?
4. About how much has the atmospheric CO₂ increased from 1988 to 2011?
 Increase in ppm: __________
 Percentage Increase: __________
5. About how much has the ocean CO₂ increased from 1988 to 2011?
 Increase in ppm: __________
 Percentage Increase: __________
6. About how much has the ocean pH decreased from 1988 to 2011?
 Decrease in pH units: __________
 Increase in acidity*: __________
 *Note: pH scale is logarithmic: a decrease from 9.0 to 8.0 equals a 10x increase in acidity.
7. Hypothetically, at some point in the future, suppose the pH of the ocean decreased to 8.0. How much of an increase in acidity would that represent (from 1988)?
8. What could be done to prevent the scenario in the above question from happening?

CO₂ data. They then interpret their graph by answering a series of questions (Box 2). The data and graphing instructions can be downloaded from the “Other Fun and Exciting Resources” Section of the C-MORE K-12 Teacher page http://cmore.soest.hawaii.edu/education/teachers/index.htm (they are listed under the activity title: How has the ocean chemistry changed in the past 25 years?). Answer keys will be gladly provided upon request (email barb@hawaii.edu).

Conclusions

Human activities such as burning fossil fuels are radically affecting our planet. Atmospheric CO₂ levels are rapidly increasing, causing average global temperatures to warm and sea levels to rise. Beaches are disappearing, coasts are eroding and saltwater is intruding into groundwater. Extreme weather events are becoming more common and having devastating effects on human life and property. The oceans are acidifying, posing threats to marine organisms and ecosystems. These issues are critically important, and we strongly urge teachers to bring climate change science into their classroom in all subject areas and at all grade levels. Teachers are encouraged to contact the authors about any aspect of this paper, or to share comments, questions or suggestions.

Acknowledgments

This work was supported by NSF #0424599 and #1160664. It is based on a Geophysical Information for Teachers workshop presented at the 2013 American Geophysical Union meeting in San Francisco, CA. Surely Wallace and Kimberley Thomas performed background research. Lance Fujieki and Dan Sadler provided HOT data. Finally, we are grateful to Chip Fletcher for useful discussions.

References

Next Generation Science Standards: http://www.nextgenscience.org/

NOAAa: ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt

Skeptical Science: http://skepticalscience.com

About the Authors

Barbara C. Bruno, Ph.D. is on the faculty of the University of Hawaii’s School of Ocean and Earth Science and Technology. Her research background is in geology and geophysics. Since 2006, she has served as C-MORE’s Director of Education, where she oversees a number of science education initiatives at the pre-college and post-secondary levels. Barbara can be contacted at barb@hawaii.edu

Johanna L. K. Wren, M.S. is a graduate student at the University of Hawaii’s School of Ocean and Earth Science and Technology. She is a Ph.D. candidate in biological oceanography, focusing on larval dispersal and population connectivity in the Hawaiian Archipelago. In addition to conducting scientific research, she is developing and implementing an outreach program aimed at broadening participation in ocean and earth science majors and careers. Johanna can be reached at jwren@hawaii.edu